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Abstract

In this investigation, a new formulation for the wheel/rail contact problem based on the elastic force
approach is presented. Crucial to the success of any elastic force formulation for the wheel/rail contact
problem is the accurate prediction of the location of the contact points. To this end, features of multibody
formulations that allow introducing additional differential equations are exploited in this investigation in
order to obtain a good estimate of the rail arc length travelled by the wheel set. In the formulation
presented in this paper, four parameters are used to describe the wheel and the rail surfaces. In order to
determine the location of the points of contact between the wheel and the rail, a first order differential
equation for the rail arc length is introduced and is integrated simultaneously with the multibody equations
of motion of the wheel/rail system. The method presented in this paper allows for multiple points of contact
between the wheel and the rail by using an optimized search for all possible contact points. The normal
contact forces are calculated and used with non-linear expressions for the creepages to determine the creep
forces. The paper also discusses two different procedures for the analysis of the two-point contact in the
wheel/rail interaction. Numerical results obtained using the elastic force model are presented and compared
with the results obtained using the constraint approach.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Two approaches are commonly used for solving the problem of wheel/rail contact in railroad
dynamics [1–6]. The first is the elastic approach in which the wheel is assumed to have six degrees
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of freedom with respect to the rail. The normal contact forces are defined using Hertz’s contact
theory or in terms of assumed stiffness and damping coefficients [9,10]. The second approach is
the constraint approach in which non-linear kinematic contact constraint equations are
introduced, leading to a model in which the wheel has five degrees of freedom with respect to
the rail [7,8].
Since in the elastic approach the wheel is assumed to have six degrees of freedom with respect to

the rail, separation between the wheel and the rail is allowed. However, one of the main problems
encountered when using the elastic approach is the difficulty in determining the location of the
contact point on line. In most elastic force models, the three-dimensional contact problem is
reduced, for the sake of efficiency, to a two-dimensional problem when the location of the contact
points is searched for. In the case of a wheel set travelling on a curved track with specified or non-
specified velocity, accurate prediction of the rail arc length travelled by the wheel can be crucial in
determining the correct location of the point of contact on the wheel and the rail. It is the
objective of this paper to address this important problem, and propose a computer methodology
that allows for accurate prediction of the co-ordinates of the contact points when the elastic
approach is used in the analysis of the wheel/rail contact.
In this paper, a new formulation based on the elastic force model is developed for the wheel/rail

contact problem. In this formulation, four surface parameters are used to describe the geometry of
the wheel and rail surfaces. The equations of motion are formulated using the Lagrangian
approach [11]. In order to be able to accurately determine the location of the contact points
on the wheel and the rail, a first order differential equation expressed in terms of the rail arc
length and the wheel generalized co-ordinates and velocities is introduced. The solution of this
system of differential equations defines the system-generalized co-ordinates and velocities
as well as the arc length travelled by the wheel. Knowing this arc length, the three-dimensional
kinematic problem can be simplified to determine the location of the contact point on the wheel
and the rail. The method can be used in the case of straight and curved tracks and allows for
general spline function representation of the wheel and rail surface profiles. The co-ordinates
and velocities of the contact points are also used to determine the non-linear expressions of the
creepages. Using the non-linear creepage expressions and the normal forces, the tangential
creep forces are calculated and used to define the generalized creep forces associated with the
system generalized co-ordinates. Numerical results obtained using the proposed elastic force
approach are presented and compared with the results obtained using the contact constraint
approach [7,8].
This paper is organized as follows: in Section 2, the fundamental differences between the

constraint method and the elastic force method are explained. Section 3 is devoted to the
kinematic representation of the wheel and rail profiles used in both methods. Section 4 describes
the algorithms used to determine the contact points, and Section 5 summarizes the procedure
used in this paper to calculate the contact forces in the elastic force method. In Section 6, the
form of the dynamic equations used in the elastic force method is presented, while a brief review
of the contact constraint formulation is presented in Section 7. Section 8 explains two different
methods used for the analysis of the two-point contact in wheel/rail interaction; the elastic method

and the hybrid method. Numerical results of a single wheel set travelling on tangent and
curved tracks are presented in Section 9. Summary and conclusions of this work are provided in
Section 10.
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2. Contact constraint and elastic approaches

In rigid-body mechanics, two different approaches can be used to describe the contact between
bodies: the constraint method and the elastic method. For bodies with non-conforming and
smooth geometries, it is assumed in both approaches that contact occurs at a single material point
on each body. The contact forces are assumed to be concentrated, and applied at these contact
points. Apart from the numerical treatment of the contact problem, that will be discussed in more
details in later sections of this paper, these two approaches differ in three physical aspects: the
determination of the contact point, the evaluation of the normal contact forces and the
indentation allowed between the bodies in contact. These differences are illustrated in Fig. 1 and
explained below.

2.1. Contact location

In the constraint method, the contact points on both solids coincide as guaranteed by imposing
the kinematic contact constraints. In the elastic method, the contact points do not, in general,
coincide. The contact point on one body has to be located inside the volume of the other body
since penetration occurs. In this case, the contact points can be selected from those points
belonging to the volume that the two solids share as the points of maximum indentation
(maximum normal distance).

2.2. Determination of normal contact forces

In the constraint method, normal contact forces are obtained as the reaction forces (Lagrange
multipliers) resulting from imposing the contact constraint equations. This means that the contact
forces are those forces that are necessary to guarantee the dynamic equilibrium and satisfy the
constraints imposed on the motion of the system. In the elastic method, normal contact forces are
evaluated as functions of the indentation. Contact forces are treated as visco-elastic forces that
can be expressed as functions of the co-ordinates and velocities of the two bodies.

2.3. Penetration between bodies

In the constraint method, no penetration is allowed between the bodies since it is assumed that
the surfaces do no experience any deformation. In the elastic method, on the other hand,
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penetration is assumed to occur and is used to determine the contact forces. The contact forces are
equal to zero if there is no penetration. The penetration that occurs can be used as the basis to
develop, in the elastic method, a simple procedure to evaluate the local deformation of the bodies
in contact. Although bodies are assumed to be rigid, the contact forces calculated in the elastic
method are those forces that would occur if the penetration were due to a local elastic
deformation, and the calculated contact forces are usually equivalent to those forces that would
appear if the bodies in contact would be pressed against each other by external static forces.

3. Track and wheel geometries

In the general formulation of the contact between a rigid wheel and a rigid rail, two surface
parameters are used to describe the geometry of each of the two surfaces in contact. The two
surface parameters sr

1 and sr
2 are used to describe the geometry of the rail surface, and sw

1 and sw
2

are the two surface parameters used to describe the wheel surface, as shown in Fig. 2. The position
vector of a point on the wheel or the rail can be defined in the respective body co-ordinate
system as

%ul ¼ %ulðsl
1; s

l
2Þ; ð1Þ

where l ¼ w or r; and superscript w and r refer to wheel and rail, respectively.

3.1. Track geometry

Fig. 3 shows a curved rail r with an arbitrary geometry and surface profile. The surface
geometry of the rail r can be described in the most general case using the two surface parameters sr

1

and sr
2; where sr

1 represents the rail arc length and sr
2 is the surface parameter that defines the rail

profile, as shown in Fig. 2. For convenience and simplicity, the surface parameter sr
2 is defined in a

profile co-ordinate system X rpY rpZrp; also shown in Figs. 2 and 3. The location of the origin and
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the orientation of the profile co-ordinate system, defined, respectively, by the vector Rrp and the
transformation matrix Arp; can be uniquely determined using the surface parameter sr

1 [12]. Using
this description, the global position vector of an arbitrary point on the surface of the rail r can be
written as [12]

rr ¼ Rr þ ArðRrp þ Arp %urpÞ; ð2Þ

where Rr is the global position vector of the origin of the rail co-ordinate system X rY rZr; Ar is the
transformation matrix that defines the orientation of the rail co-ordinate system, and %urp is the
local position vector that defines the location of the arbitrary point on the rail surface with respect
to the profile co-ordinate system. Note that due to the above-mentioned description of the rigid
rail geometry, one has

Rrp ¼ Rrpðsr
1Þ; Arp ¼ Arpðsr

1Þ; %urp ¼ ½ 0 sr
2 f ðsr

2Þ �
T; ð3Þ

where f is the function that defines the rail profile. The transformation matrix Arp can be
expressed in terms of three Eulerian angles, each of which can be expressed uniquely in terms of
the surface parameter sr

1: Note also that the rail geometry described by the preceding two
equations allows for a general displacement of the rail with respect to the global co-ordinate
system. The method developed in this investigation allows for an arbitrary spline representation
for the rail and accounts for the rail cant, elevation, and gage variation.

3.2. Wheel geometry

Fig. 4 shows a wheel with an arbitrary surface profile. The surface geometry of the wheel w can
be described using the two surface parameters sw

1 and sw
2 : The surface parameters are defined in a

wheel set co-ordinate system X wY wZw; also shown in the figure. The surface parameter sw
1 defines

ARTICLE IN PRESS

X
Y

Z

XY

Z

X

Z

Y

r r

r

r

r

r

rp

rp

rp

rp

rp

R

r
u

R

s1

Fig. 3. Track geometry.

A.A. Shabana et al. / Journal of Sound and Vibration 269 (2004) 295–325 299



the wheel profile and sw
2 represents the rotation of the contact point, as shown in Fig. 2. The

location of the origin and the orientation of the wheel set co-ordinate system are defined
respectively by the vector Rw and the transformation matrix Aw: Using this description, the global
position vector of an arbitrary point on the surface of the wheel w can be written as

rw ¼ Rw þ Aw %uw; ð4Þ

where %uw is the local position vector that defines the location of the arbitrary point on the wheel
surface with respect to the wheel set co-ordinate system. In the case of the right wheel, this vector
is defined as

%uw ¼ ½ gðsw
1 Þ sin sw

2 �L þ sw
1 gðsw

1 Þ cos sw
2 �
T; ð5Þ

where g is the function that defines the wheel profile, and L is the distance between the origin of
the wheel set co-ordinate system and point Q of the wheel, as shown in Figs. 2 and 4.

4. Determination of the contact points

As previously pointed out, one of the important problems encountered in the use of the elastic
force model is the accurate determination of the point on the wheel surface that comes into
contact with the rail. Crucial in the development of a successful computational strategy is accurate
prediction of the wheel and rail surface parameters that determine the points of contact. The
method described in this section allows for identifying an arbitrary number of contact points
between surfaces that have arbitrary geometry. In the search method used in this investigation, the
contact surface geometry are defined in wheel and rail surface profile co-ordinate systems, as
shown in Fig. 2, using discrete nodal points and a spline function representation. A preprocessor
is used to define the location of these nodal points with respect to the body (wheel or rail) co-
ordinate system assuming that the orientation of the surface profile co-ordinate system remains
constant with respect to the body co-ordinate system.
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The search for the contact points consists of the following three steps:

1. Calculation of the rail arc length sr
1 travelled by the wheel. The parameter sr

1 defines the rail
cross section in which the points of contact are located.

2. Calculation of the wheel angular parameter sw
2 : The parameter sw

2 defines the wheel diametric
section in which the points of contact are located.

3. Search for the contact points. In this phase the rail parameter sr
2 and the wheel parameter sw

1 of
the points of contact are determined. This phase of the search starts once the sections of the
wheel and rail in which the contact points are located are determined. The exact position of the
contact points is determined in this phase of the search.

The algorithms used for the three steps of the search are described in the following subsections.

4.1. Calculation of the rail arc length travelled by the wheel

In the search algorithm used in this investigation to determine the contact points, a selected
point Q on the center of the wheel is used first to determine the rail space curve parameter sr

1: It is
assumed that the rate of change of the rail parameter sr

1 is equal to the projection of the velocity of
this point on the tangent along the longitudinal rail direction. The position of this selected point
with respect to the wheel co-ordinate system is defined as

uw
Q ¼ rw

Q � Rw; ð6Þ

where rw
Q is the global position vector of point Q; and Rw is the global position of the origin of the

wheel co-ordinate system. The global velocity of this point on the wheel is defined as

’rw
Q ¼ ’R

w
þ xw � uw

Q; ð7Þ

where xw is the angular velocity vector of the wheel defined in the global co-ordinate system.
Knowing the tangent tr

1 to the space curve of the rail at the current sr
1; the following first order

differential equation can be defined:

’sr
1 ¼ ’rwT

Q tr
1: ð8Þ

This differential equation is solved simultaneously with the differential and algebraic equations of
the multibody system in order to determine sr

1 that is used for the search for the point of contact
between the wheel and the rail. Clearly, one needs to introduce a number of arc length first order
differential equations (Eq. (8)) equal to the number of wheels in the dynamic model.
Knowing the current arc length sr

1; the location and orientation of the rail surface profile
co-ordinate system that corresponds to a possible contact with the wheel can be defined in
the rail co-ordinate system. As previously discussed, let Rrp and Arp define, respectively, the
location of the origin and orientation of the rail surface profile co-ordinate system, and let
%urpdefine the position vector of an arbitrary point on the surface profile with respect to the
surface profile co-ordinate system. The global position vector of this arbitrary point can be
defined using Eq. (2).
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4.2. Calculation of the wheel angular parameter

For the calculation of the wheel parameter sw
2 of the contact points, an intermediate co-ordinate

system X wiY wiZwi which does not rotate with the wheel, and it has the same wheel roll and yaw
rotations is determined. Fig. 4 shows this co-ordinate system as well as the wheel body fixed co-
ordinate system X wY wZw and the rail profile co-ordinate system X rpY rpZrp; previously
introduced. The co-ordinate system X wiY wiZwi is determined as follows. The axis Y wi is selected
to be the same as the current wheel Y w-axis, thereby ensuring that the two co-ordinate
systems have the same roll and yaw angles. Note that the axis Y w is known as the result of
the dynamic simulation that defines the wheel orientation. The axis X wi is defined by the
unit vector iwi; where

iwi ¼ jwi � krp; ð9Þ

and where jwi is a unit vector along the Y wi-axis, and krp is a unit vector along the Zrp-axis of the
rail profile co-ordinate system previously described. Using the preceding equation, the Zwi-axis
can be defined using the unit vector kwi defined as

kwi ¼ iwi � jwi: ð10Þ

This completes the definition of the orthogonal triad X wiY wiZwi: The point of contact on the
wheel is assumed to be located at the plane formed by the Y wi- and Zwi-axes. This plane
determines the diametric cross-section of the wheel in which the contact point is assumed to be
located. Therefore, the parameter sw

2 is obtained as the angle between the wheel set fixed axis Zw

and the intermediate axis Zwi:

4.3. Search for the contact points

In order to determine the points of contact between the wheel and the rail, the global position
vectors of the nodal points that define the wheel and rail profiles are determined as described in
the previous subsections. The distance between the points on the wheel and the points on the rail
are calculated and used with a user specified tolerance criterion to determine the points of contact.
Since this search can lead to a very large number of contact points, an optimized procedure that
improves the computational efficiency must be adopted. In this investigation, the contact points
are grouped in batches. A batch is a collection of sets of pairs of nodal points on the wheel and rail
that have non-zero penetration. While the algorithm developed in this study allows for an
arbitrary number of contact batches, a limit of two contact batches as shown in Fig. 5 is assumed
in the numerical investigation presented in this paper. The two points (one on the wheel and one
on the rail) that lead to the maximum indentation are selected as the points of contact for any
given batch. The number of points of contact between the wheel and the rail is assumed to be
equal to the number of the contact batches. That is, the algorithm used in this investigation to
search for the contact points allows, in general, for multiple contacts between the wheel and
the rail.
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5. Calculation of contact forces

In this investigation, it is assumed that each contact area has an elliptic shape. The surface
parameters are used to determine the principal curvatures at the point of contact. The normal
contact forces and the dimension of the contact ellipses are determined using Hertz’s contact
theory [13]. By providing the penetration at the contact point as well as the material properties of
the wheel and the rail, the normal contact forces can be calculated. The direction of the normal
force is determined as the direction of the normal to the surface at the contact point. The
dimensions of the contact ellipses and the normal forces are required in order to calculate
the creep forces that are determined using Kalker’s USETAB routine. No linearization is used in
the calculations of the creepages used to determine the creep forces. The generalized normal and
creep forces associated with the system generalized co-ordinates are determined and introduced to
the multibody system dynamic equations of motion as described in the following section.
In the evaluation of the normal contact force, in addition to the Hertzian component, which is a

function of the indentation, a damping force proportional to the velocity of indentation is
included. The expression of the normal force used in this investigation is given by

F ¼ Fh þ Fd ¼ �Khd
3=2 � C ’djdj; ð11Þ

where d is the indentation, Fh is the Herzian (elastic) contact force, Fd is the damping force, Kh is
the Hertzian constant that depends on the surface curvatures and the elastic properties, and C is a
damping constant. The velocity of indentation ’d is evaluated as the dot product of the relative
velocity vector of the contact points on the wheel and rail and the normal vector to the surface at
the contact point. The expression of the damping component of the contact force is obtained by
modifying the damping force proposed by Lee and Wang [14]. The reason for including the factor
jdj is to guarantee that the contact force is zero when the indentation is zero. The damping
coefficient C has to be selected in such a way that no tensile forces are generated when the
indentation decreases (restitution phase).
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6. Formulation of the dynamic equations

For a railroad vehicle model, the augmented form of the equations of motion can be written
as [11]

M CT
q

Cq 0

" #
.q

l

" #
¼

Q

Qd

" #
; ð12Þ

whereM is the system mass matrix, Cq is the Jacobian matrix of the kinematic constraints, q is the
vector of the system generalized co-ordinates, l is the vector of Lagrange multipliers,Q is a vector
that includes external, applied contact, creep, and centrifugal and Coriolis forces, and Qd is the
vector that results from the differentiation of the constraint equations twice with respect to time,
that is

Cq .q ¼ Qd : ð13Þ

The vector of the kinematic constraint equations Cðq; tÞ ¼ 0 describes mechanical joints as well as
specified motion trajectories that include driving constraints. Such driving constraints include the
specified forward velocity of the wheel sets.
As previously pointed out, crucial to the success of the elastic force model developed in this

investigation for the dynamic simulation of the interaction between the wheel and the rail is the
accurate prediction of the rail arc length travelled by the wheel. The new method proposed in this
investigation allows for such an accurate prediction by introducing an arc length first order
differential equation that depends non-linearly on the wheel generalized co-ordinates and the rail
geometry. This first order differential equation, which is defined by Eq. (8), is integrated
simultaneously with the state equations obtained for the wheel/rail system using Eq. (12). The
numerical integration of this new combined system of equations defines the system generalized co-
ordinates and velocities as well as the rail arc length sr

1 travelled by the wheel. This parameter sr
1 is

used as the basis for the search for the contact points as previously described in this paper.

7. Constraint formulation

In later sections of this paper, numerical results are presented in order to compare between the
elastic contact force model presented in this paper and the constraint force model presented in
previous publications [7,8]. These two conceptually different approaches lead to different
formulations that require different numerical solution procedures. In this section, the constraint
contact formulation is briefly reviewed in order to shed light on the basic differences between the
two approaches. To this end, the geometric description of the wheel and rail surfaces is assumed
to be the same as the one used in the elastic method described in this paper.
Five kinematic constraint equations are used to describe the general contact between two rigid

bodies [7,8]. Three of these five constraints, called contact point constraints, impose the conditions
that two points on the two bodies coincide during the dynamic motion as shown in Fig. 6 while
avoiding penetration and separation, that is

rw ¼ rr: ð14Þ
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The remaining two constraints, called orientation constraints, impose the condition that the
normals to the surfaces at the contact point are parallel, that is

nw ¼ anr; ð15Þ

where nw and nr are, respectively, the normals to the wheel and the rail surfaces at the contact
point, and a is a scalar. Since four new surface parameters are introduced, the preceding
independent five contact constraint equations can be used to eliminate only one generalized degree
of freedom. Therefore, in this formulation, the wheel has five degrees of freedom with respect to
the rail.
In general, the kinematic constraint equations, including the contact constraints, imposed on

the motion of a multibody system can be expressed in the following vector form:

Cðq; s; tÞ ¼ 0; ð16Þ

where C is the vector of constraint functions, q is the vector of the system generalized co-
ordinates, s is the vector of the system non-generalized surface parameters, and t is time.
Differentiating the preceding equation twice with respect to time and combining the resulting
acceleration equations with the Lagrangian form of the equations of motion expressed in terms of
Lagrange multipliers, one obtains the following augmented form of the equations of motion of the
multibody system subject to contact constraints [7,8]:

M 0 CT
q

0 0 CT
s

Cq Cs 0

2
64

3
75

.q

.s

l

2
64

3
75 ¼

Q

0

Qd

2
64

3
75; ð17Þ

where M is the system mass matrix, l is the vector of Lagrange multipliers, Q is a vector that
includes external, creep, and centrifugal and Coriolis forces, and Qd is a quadratic velocity vector
that results from differentiating the kinematic constraints twice with respect to time [11]. Note
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that the preceding augmented form of the equations of motion is expressed in terms of the
generalized co-ordinates q as well as the non-generalized surface parameters s and their time
derivatives.
In the general contact constraint formulation discussed in this section, the generalized co-

ordinates and non-generalized surface parameters are solved simultaneously. That is, the effect of
the changes of the surface parameters on the system-generalized co-ordinates is taken into
consideration without assumptions or simplifications. Some other formulations ignore, for the
sake of efficiency, the effect of the changes of all or some of the non-generalized surface
parameters on the system-generalized co-ordinates. In these other formulations, at a given
configuration of the wheel set, the geometric problem is solved by formulating a set of algebraic
constraint equations that are used to determine the surface parameters for a given set of
generalized co-ordinates of the wheel set. Using these surface parameters, the location of the
contact point on the wheel and the rail can be determined. By using this approach the effect of the
changes in the generalized co-ordinates on the non-generalized surface parameters is taken into
consideration, while the effect of the changes of the surface parameters on the generalized co-
ordinates is neglected. In such formulations that account for partial coupling between the
generalized co-ordinates and non-generalized surface parameters, the order of the partial
derivatives with respect to the surface parameter can be less than the third order required by the
general contact formulation used in this investigation [7,8].
The main features of the contact constraint formulation used in this investigation can then be

summarized as follows [7,8]:

1. The surface parameters are introduced in order to obtain a general formulation for the contact
problem that allows predicting the location of the contact point on line. These surface
parameters are treated as non-generalized co-ordinates since there is no inertia or forces
associated with them.

2. The non-linear contact constraints are solved using an iterative Newton–Raphson algorithm in
order to guarantee the existence of one contact between the wheel and the rail. Using the
solution of the non-linear algebraic constraint equations, the contact constraint equations at
the acceleration level are augmented to the system differential equations using the technique of
Lagrange multipliers.

3. In the augmented formulation of the contact problem, Lagrange multipliers are used
to determine the normal contact forces that enter into the calculations of the creep
forces.

4. Higher order derivatives with respect to the surface parameters are required in order to impose
the contact constraints at the acceleration level.

5. In the contact constraint formulation, it is assumed that there is no separation between the
wheel and the rail. Normal contact forces obtained using Lagrange multipliers can be
compressive or tensile forces. Tensile contact forces are not physically meaningful in wheel/rail
problems but they can be used to predict wheel lift.

In the augmented formulations based on the general constraint approach that accounts for the
complete dynamic coupling between the generalized and non-generalized co-ordinates, the degrees
of freedom of the system are determined using a numerical procedure based on the numerical
structure of the contact constraint Jacobian matrix. Several numerical studies have demonstrated
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that the optimum set of the system degrees of freedom selected by the computer includes non-
generalized surface parameters. Therefore, while the surface parameters have no inertia or forces
associated with them, the optimum set of the independent state equations can include surface
parameter state equations that are integrated simultaneously with other differential equations.
The numerical integration determines the independent generalized co-ordinates and non-
generalized surface parameters. Dependent co-ordinates and surface parameters are determined
using the kinematic contact constraints.

8. Two-point contact problem

The simulation of the two-point contact between a wheel and a rail is one of the most difficult
problems in the analysis of railroad vehicle systems. The two-point contact scenario that includes
a flange contact is important in the analysis of curving behavior, hunting instability and
derailment. The forces that result from the second point of contact influences the forces at the first
point of contact, and these second point of contact forces can have a significant effect on the
railroad vehicle dynamics and instability.
In this paper, two conceptually different methods are discussed for the analysis of the wheel/rail

interaction. The first is the elastic force model that allows six degrees of freedom for the wheel
with respect to the rail. This method also allows for the wheel lift. As described in this paper, a
search is made in order to determine the contact batches and the contact points. Therefore, the
elastic force model can be directly used to study the two-point contact by limiting the number of
contact batches to two. The forces at the two contact points can be calculated as previously
described in this paper.
A second method that can be used in the analysis of the two-point contact is a hybrid

method. In this hybrid method, which allows only five degrees of freedom for the wheel with
respect to the rail, the first point of contact is predicted using the contact constraint approach,
while the second point of contact is determined using the elastic approach. The second point of
contact is obtained by numerically searching for a point of contact different from the first
point that is determined using the kinematic contact constraints. In the hybrid method, the
normal force at the first point of contact is determined using Lagrange multipliers, while the
normal force at the second point of contact is determined using the elastic approach described in
this paper.
The second point of contact between the wheel and the rail can be located in a plane different

from the plane that contains the centerline of the wheel and the first point of contact due to the
yaw rotation of the wheel set. This contact configuration is known as the lead or lag contact.
Considering this contact scenario is important in curve negotiation. Fig. 7 shows the location of
the second point of contact at the right wheel in case of the lead contact. As can be observed, the
diametric section that contains the second contact point on the wheel makes an angle Dsw

2 with
the diametric section that contains the first contact point. Also, the section of the rail that contains
the second point of contact is located at a distance Dsr

1 of the section that contains the first point
of contact. Lag contact occurs when the values Dsw

2 and Dsr
1 are negative. In the method used in

this investigation, the search process used is able to detect the lead and lag contacts and, therefore,
the values Dsw

2 and Dsr
1 can be evaluated.
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9. Examples and numerical results

In this section, examples are presented in order to demonstrate the use of the formulations and
numerical procedures discussed in this paper. These examples include the results of wheel set
hunting at low and high speeds as well as the results of two-point contact analysis. Comparison
between the results obtained using the elastic approach and the constraint approach is made.

9.1. Low-velocity hunting

A wheel set that travels on a tangent track with specified constant forward velocity is used as an
example to study hunting at low speeds. The simulation results are obtained using two different
methods: the elastic force model and the hybrid model. The wheel set mass is assumed to be
1568 kg, the moments of inertia are assumed to be Iyy ¼ 168 kgm2, Ixx ¼ Izz ¼ 656 kgm2. The
wheels are assumed to be profiled with approximate conicity of 1/40, while the rail profile is
assumed to be of the AREA type. The wheel and rail profiles are shown in Fig. 8. The coefficient
of friction between the wheel and the rail is assumed to be 0.5. The wheel co-ordinate system and
dimensions of the wheel and track are shown in Fig. 9. The constrained forward velocity of the
wheel set is assumed to be V ¼ 10m/s. The wheel set is assumed to have an initial lateral velocity
vy ¼ �8mm/s. All other initial conditions are assumed to be zero. Note that in this example,
because of the low speed, the wheel set does not experience a flange contact and the hybrid
method simply reduces to the constraint method.
Fig. 10 shows the wheel set angular velocity as a function of time. The results presented in this

figure are obtained using the constraint and elastic methods. These results show that the angular
velocity changes linearly from zero to 21.88 rad/s in the time interval (0, 1:05 s). The angular
velocity remains approximately constant afterwards. The results of a simple analytical analysis
using Coulomb friction agree with the results presented in Fig. 10. Fig. 11 shows the forces and
moments that act on the wheel set during the period in which sliding occurs. The free body
diagram shown in this figure includes the inertia forces and the force F due to the driving
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constraint. The normal contact force N is equal to the weight of the wheel set, and the horizontal
contact force is equal to mmg: Taking the moments about an axis passing through the center of the
wheel set, the angular acceleration during the period of sliding can be obtained as follows:

a ¼
mmgR

I
; ð18Þ
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where R is the radius of the wheel, and I ¼ Iyy is the mass moment of inertia of the wheel set.
Therefore, if the initial angular velocity of the wheel set is assumed zero, the wheel set angular
velocity during the period of sliding is given by the linear expression

o ¼
mmgR

I
t: ð19Þ

This equation is valid until the wheel set deviates from gross sliding. At the instant of pure rolling,
the angular velocity is given by

o ¼
V

R
¼ 21:88 rad=s; ð20Þ

where V is the constrained forward velocity of the wheel set. Using Eqs. (19) and (20), the time at
which pure rolling starts is given by

tpr ¼
VI

mmgR2
¼ 1:05 s: ð21Þ

A horizontal balance of the forces shown in Fig. 11 yields

F ¼ ma þ mmg: ð22Þ

Due to the constant forward velocity constraint, the acceleration of the wheel set and the inertia
force are zero. Therefore, the force required to maintain the constant forward velocity during the
period of gross sliding is F ¼ mmg ¼ 7:69 kN. This force is obtained as the Lagrange multiplier
associated with the forward velocity driving constraint.
Fig. 12 shows the longitudinal contact force at the left wheel for the hybrid and elastic methods

evaluated using Kalker’s USETAB routine. The longitudinal contact force shows oscillations
when the elastic method is used. For both models, during the period of sliding, the mean value of
this force agrees well with the theoretical value (0:5 mmg ¼ 3:85 kN). Fig. 13 shows the force
associated with the forward velocity driving constraint (Lagrange multiplier). It is clear from the
results presented in this figure that during the period of sliding the mean value coincides with the
value given previously using the simple analytical analysis.
Fig. 14 shows the lateral displacement of the wheel set. The results show a good agreement

between the elastic method and the hybrid method. As shown in the figure, the amplitude of the
oscillations increases more rapidly in the results of the hybrid method than in the results of the
elastic method. Fig. 15 shows the yaw angle of the wheel set for both models. Klingel’s formula
[15] gives a hunting frequency of 0.428Hz for this problem. The frequencies predicted from the
multibody dynamic simulation are 0.423Hz for both the hybrid method and the elastic method.
Therefore, the hunting frequency obtained from the simulations is slightly smaller than Klingel’s
theoretical value.
Fig. 16 shows the time history of the left wheel parameter sw

1 of the contact point for both
models. The results of the elastic method show that this parameter changes in finite increments,
this is due to the method of the search for the contact point. As previously explained, the contact
point is selected from the nodal points that define the wheel profile. Therefore, the use of large
number of nodal points leads to smoother results.
Fig. 17 shows the normal contact force at the right wheel for both models. For the hybrid

method the force is smoother and oscillates with a mean value equal to half the weight
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of the wheel set. The frequency of oscillation of the force is the same as the hunting frequency.
This effect is due to the lateral displacement, as the wheel set moves laterally to one side
the normal contact force increases in that side and decreases in the opposite side [8]. The
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normal contact force for the elastic method shows high-frequency oscillations superimposed on
the low hunting frequency oscillations. The mean value, however, remains half the weight of the
wheel set.
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9.2. High-velocity hunting

In this section, the dynamics of the same wheel set is examined when the forward velocity V is
increased to 30m/s. The results are obtained using the two methods: the elastic force model and
the hybrid model. In this case, the wheel set is assumed to have an initial rolling angular velocity
oy ¼ 65:6 rad/s and an initial lateral velocity vy ¼ �0:18m/s. All other initial conditions are equal
to zero. Because of the initial angular velocity the motion starts with pure rolling. Fig. 18 shows
the lateral displacement for both models, while Fig. 19 shows the yaw angle. These two figures
show a good agreement between the results obtained using the two methods. Klingel’s formula
gives a hunting frequency of 1.285Hz for this problem. Using the results of the simulations, the
calculated frequencies are 1.484Hz for the hybrid model and 1.373Hz for the elastic model. Figs.
18 and 19 show that flange contacts restrict the value of the lateral displacement and yaw angle
within certain maximum limits, 710mm and 70.18
, respectively. Figs. 20 and 21 show the
lateral impact forces at the wheel flanges for both models. It is clear from the results presented in
the figures that these forces act at the right and left wheels. Figs. 22 and 23 show the normal
contact forces for both models at the tread of the left wheel. As in the previous example, the
normal contact forces oscillate with the hunting frequency [8]. Fig. 22 shows that, for the hybrid
method, the normal contact force has a jump as the result of the flange impacts. At these instants,
the normal contact force has negative (tensile) values (maximum tensile contact forces are not
shown in Fig. 22). Clearly, these forces are not physically meaningful, and they are due to the
limitation of the constraint model, which does not allow separation between the wheel and the
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rail. However, such results can be used in the future to develop criteria for wheel/rail separation.
The normal contact force given in Fig. 23 for the elastic model shows high-frequency oscillations
superimposed on low hunting frequency oscillations. Contact force jumps due to flange impacts
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can also be observed in this figure. However, since the elastic model allows separation, tensile
contact forces do no appear.

9.3. Two-point contact in curved track simulation

In this example, the wheel set travels with constant forward velocity V ¼ 10m/s on a curved
track. The wheel set and the rail have the same properties used in the previous examples. No
constraint is imposed on the yaw rotation of the wheel set. The track has a constant curvature of
5
 (1000-chord definition) and zero superelevation. Therefore, the radius of curvature RC is
constant and is equal to 350m. The wheel set is assumed to have an initial rolling angular velocity
of oy ¼ 21:88 rad/s. All other initial conditions are assumed to be equal to zero. As in the previous
examples, the results are obtained using the elastic and the hybrid methods.
During a simulation time of 8 s, the wheel set travels 80m. At that point, the angle between the

tangent to the rails and the X global axis is 13
. Fig. 24 shows the motion trajectory of the wheel
set. Fig. 25 shows the angle rotated versus time. As shown in Fig. 25, the wheel set rotates about
the Z-axis with approximately constant angular velocity. The results obtained using the elastic
and the hybrid methods were found to be approximately identical. A short time after the
beginning of the simulation, the right wheel encounters two-point contact and maintains this
contact with the right rail during the entire simulation, as the result of the centrifugal force. As a
consequence, the transverse position of the wheel set with respect to the rail does not change, and,
the wheel surface parameters sw

1 and the rail surface parameters sr
2 remain constant. Their values
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are given in Tables 1 and 2. The yaw and roll angles of the wheel set also remain approximately
constant, their values are given in Table 3 for the hybrid and elastic methods.
Figs. 26 and 27 show the magnitude of the contact forces at the left wheel, including normal and

creepage forces, for the elastic and hybrid method, respectively. It is clear that in both models
these forces show high-frequency osillations, keeping a constant average value of 8 kN. Figs. 28
and 29 show these forces at the two points of contact at the right wheel. These forces have
approximately constant average values of 7 kN for the first contact and 6 kN for the second
contact. A good agreement is found between the results of the hybrid and the elastic models. Since
the yaw rotation of the wheel set is negative, the second point of contact appears in the leading
side of the right wheel. The values of Dsr

1 and Dsw
2 are provided in Table 3 for the hybrid and

elastic methods.
Figs. 30 and 31 show a free body diagram of the wheel set with approximate average values of

the contact forces in the transverse and longitudinal directions, respectively. The weight and
centrifugal forces ðmV 2=RCÞ are included in Fig. 30. In the vertical direction, the weight of the
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Table 1

Surface parameters for the three contacts (elastic method)

Variable Contact

Right wheel Right wheel Left wheel

(first contact) (second contact)

Rail parameter sr
2 (mm) 2.36 36.95 �2.36

Wheel parameter sw
1 (mm) 7.62 41.55 11.63

Table 2

Surface parameters for the three contacts (hybrid method)

Variable Contact

Right wheel Right wheel Left wheel

(first contact) (second contact)

Rail parameter sr
2 (mm) 3.29 36.95 �3.16

Wheel parameter sw
1 (mm) 8.00 41.55 11.50

Table 3

Relative position of the wheel set

Variable Method

Elastic method Hybrid method

Yaw angle (deg) �0.1031 �0.0974
Roll angle (deg) �0.0188 �0.0206
Dsr

1 (mm) 4.10 3.73

Dsw
2 (deg) 0.499 0.454
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wheel set is balanced by vertical forces at the three contacts (FL
Z ; FR

Z and FF
Z ), with the larger

values occurring at the first contacts. The force balance in the horizontal direction shows an
interesting result. It can be seen that the horizontal contact force on the flange of the right wheel
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Fig. 26. Contact force on the left wheel (elastic model).
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ðFF
Y Þ is more than 10 times the centrifugal force. This is due to the occurrence of very large friction

forces at the main contacts (FL
Y ;F

R
Y ). As a consequence, a very large dynamic friction force (F

F
X ) is

generated at the flange of the right wheel in the longitudinal direction (see Fig. 31). This dynamic
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friction force has the value given by the Coulomb friction theory, FF
X ¼ mFF ; with m ¼ 0:5 is the

assumed coefficient of friction. This friction force at the flange is balanced by a friction force FR
X at

the first contact between the rail and the wheel. Simulation results show that the longitudinal
contact force at the left wheel and the force due to the forward velocity constraint (both forces
should be included in Fig. 31) are very small (less than 0.1 kN). The previous force balance, based
on the simulation results, shows that the energy lost due to dynamic friction at the flange of the
wheel can be much larger (almost ten times) than that obtained with the assumption that the
flange horizontal force is equal to the centrifugal force.

10. Summary and conclusions

In this paper, a new elastic force contact formulation for the dynamic simulation of the wheel/
rail interaction is presented. In this contact formulation, four surface parameters are introduced in
order to be able to describe the geometry of the surfaces of the two bodies that come in contact.
The method developed in this investigation exploits features of multibody computational
algorithms that allow adding arbitrary first order differential equations. A differential equation
associated with the rail arc length and expressed in terms of the wheel generalized co-ordinates
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and velocity is used to accurately predict the location of the points of contact between the wheel
and the rail. This first order differential equation is integrated simultaneously with the dynamic
equations of motion of the wheel/rail system, thereby defining the rail arc length travelled by the
wheel. This arc length is used with an optimized search algorithm to determine all possible contact
regions. By determining the local co-ordinates of the contact points and knowing the arc length
surface parameter, the other surface parameters can be determined and used to determine the
principal curvatures of the wheel and the rail at the contact points. These principal curvatures
with the penetration and the material properties of the wheel and the rail are used to determine the
normal contact forces. The non-linear creepages and the normal contact forces are used to
determine the creep forces that in turn are used to determine the generalized creep forces
associated with the system generalized co-ordinates.
The elastic force approach proposed in this study differs from the contact constraint approach

[7,8] in which five non-linear algebraic constraint equations are used to impose the contact
conditions. These equations are expressed in terms of the generalized co-ordinates and non-
generalized surface parameters. The contact constraint equations are augmented to the
differential equations of motion using the technique of Lagrange multipliers. The augmented
form of the equations of motion can be solved for the second derivatives of the generalized co-
ordinates and non-generalized surface parameters as well as Lagrange multipliers. Lagrange
multipliers associated with the contact constraints are used to predict the normal contact forces.
As discussed in this paper and in previous investigations [7,8], the use of the general contact
constraint formulation requires the evaluation of third derivatives with respect to the surface
parameters. As a result, smoothness and differentiability of the constraint equations become an
important issue when this procedure is used.
The results obtained using the elastic force formulation proposed in this investigation and the

contact constraint formulation are compared using a wheel set travelling on tangent and curved
tracks. Two methods are proposed to study the two-point contact problem; the elastic method
and the hybrid method. Results presented in this paper show, in general, good agreement between
the results of the two methods. In general, the contact forces obtained using the elastic method
have high-frequency oscillations that are not present in the constraint method.
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